Initial Investigation of Petroleum Systems of the Permian Basin, USA

Ronald J. Hill1, Dan Jarvie2, Brenda Claxton2, Jack Burgess2 and Jack Williams3

1United States Geological Survey
Box 25046, MS 977
Denver, CO 80225

2Humble Geochemical Services
Humble, TX 77338

3AMOCO (Retired)

Acknowledgements

United States Geologic Survey
Angie Beebe
Cyndi Kester
Carl Bern
Chuck Threlkeld
David King
Mike Pribil

Humble Geochemical
Brian Jarvie
Melissa Dodd
Presentation Outline

• Goals of the study
• Geologic summary
• Analytical methods
• Definition and distribution of oil types
• Biodegradation
• Mixing of oils
• Conclusions

Goals of this Study

• Provide geochemical input for the USGS Permian Basin oil and gas assessment project
• Provide state-of-the-art geochemical data on Permian Basin petroleum systems
• Perform oil inversion study to characterize source rocks (in the absence of correlation for all sources)
• Confirm previous assessments of the Permian Basin petroleum systems
Permian Basin Production History

Cumulative Oil: 34.9 Billion barrels
Cumulative Gas: 98.5 Trillion cubic feet
Total Wells Drilled: 131,950
Active Wells: 107,098
First Production: 1905

Location of the Permian Basin
Structural Elements of the Permian Basin

Permian Basin Cross Section
Permian Basin Oils Samples Used in this Study

300+ Oils
Source Rocks
• Simpson
• Barnett
• Bone Springs
Analytical Approach

- Carbon isotopes (saturated and aromatic HC)
- Sulfur Content
- High-resolution gas chromatography (GC) of oils and rock extracts
- Biomarker analysis (GCMS)

Permian Basin Oil Families

- Permian Leonardian Bone Springs
 - Upper (Shale and carbonate)
 - Lower (Carbonate)
- Permian Guadalupe
- Permian Wolfcamp
- Pennsylvanian?
- Mississippian Barnett Shale
- Devonian-Mississippian Woodford Shale
- Ordovician Simpson Formation
Stable carbon isotopes of Permian Basin oils are variable

Sulfur content of Permian Basin oils implies variable source facies
Biological Marker (biomarkers):

Terpane Ion Chromatograms

Marine shale source:
- High tricyclics
- e.g., Woodford

G. prisca source:
- low tricyclics
- Ordovician

Carbonate source:
- High C_{29} hopane
- Predom. C_{35} hopane
- e.g., Bone Springs

Biomarker Ratios

Terpanes (m/z 191)
- C19t/C23t
- C22t/C21t
- C22t/C24t
- C24t/C23t
- C26t/C25t
- C24Tet/C23t
- C24Tet/C26t
- C23t/C30H
- C24Tet/C30H
- Gam/C30H
- Gam/C31HR
- C32 S/(S+R)

Steranes (m/z 217)
- C27 aaa 20R
- C28 aaa 20R
- C29 aaa 20R
- C27 Dia/(Dia+Reg)
- (C21+C22)/(C27+C28+C29)
- C29 abb/(aaa+abb)
- C29 aaa 20S/20R
- C29 aaa 20S/(S+R)

αββ-Steranes (m/z 218)
- C27 abb 20(R+S)
- C28 abb 20(R+S)
- C29 abb 20(R+S)
- C29/C27 abb Sterane Ratio

Other Ratios
- Tricyclic/Pentacyclic Terpanes
- Steranes/Terpanes
Differentiation of Permian Basin Shales

Steranes
\[\%27 / \%28 / \%29 \]

Bone Springs
\[45 / 19 / 36 \]

Wolfcamp
\[53 / 19 / 28 \]

Pennsylvanian
\[40 / 19 / 41 \]

Differentiation of Permian Basin Carbonate

Bone Springs D
\[\delta^{13}C_{\text{sat}} -27.5 - -28.5 \]

Guadalupe
\[\delta^{13}C_{\text{sat}} -29.0 - -30.0 \]
Permian Oils Overlay on Williston Basin
Type-specific Oils

Confirmation of Light Hydrocarbon Inference

Sample 041 T2-164 TOKIO, S - WOLFCAMP Ion mass 1
Shale-sourced Oil Hopane Biomarkers

Classical *G. prisca* Fingerprint
Carbonate biomarkers with shale C7 light hydrocarbons

Sample 022 N5-58 HOBBS, E - SAN ANDRES Ion mass 191.20
Sample 027 N5-67 HOUSE - SAN ANDRES Ion mass 191.20
Sample 042 T2-165 - DEVONIAN Ion mass 191.20

but...
Carbonate with high Tricyclics

Mississippian Barnett Source Rock C₇ Distribution

Note: Source rocks with mixed or gas potential will plot with carbonates; use Pr/Ph to segregate.
Permian Basin Oil Families

Distribution of Ordovician Simpson Sourced Oils

\(\% S = 0.3 - 0.5\)

\(\delta^{13}C_{\text{Sat}} = -32.5 - 34.5\)

\(\delta^{13}C_{\text{Aro}} = -32.4 - 34.0\)

Pr/Phy = 0.5 – 1.0
Distribution of Devonian Woodford Oils

- \%S = 0.3 – 0.6
- \(\delta^{13}C_{\text{Sat}} = -29.5 – 30.5 \)
- \(\delta^{13}C_{\text{Aro}} = -28.5 – 29.9 \)
- \(\text{Pr/Phy} = 1.1 - 1.4 \)

Distribution of Barnett Sourced Oils

- \%S = 0.2 – 0.5
- \(\delta^{13}C_{\text{Sat}} = -29.0 - 30.0 \)
- \(\delta^{13}C_{\text{Aro}} = -28.5 - 29.5 \)
- \(\text{Pr/Phy} = 12. – 1.5 \)
Distribution of Pennsylvanian Sourced Oils

\[\%S = 0.2 \text{ – } 0.6 \]
\[\delta^{13}C_{\text{Sat}} = -29.0 \text{ - } -30.5 \]
\[\delta^{13}C_{\text{Aro}} = -28.5 \text{ - } -30.0 \]
\[\text{Pr/Phy} = 1.10 \text{ – } 1.35 \]

Distribution of Permian Wolfcamp Oils

\[\%S = 0.2 \text{ – } 0.4 \]
\[\delta^{13}C_{\text{Sat}} = -29.0 \text{ - } -30.0 \]
\[\delta^{13}C_{\text{Aro}} = -28.5 \text{ - } -29.5 \]
\[\text{Pr/Phy} = 1.2 \text{ – } 1.5 \]
Distribution of Permian Guadalupe Oils

- %S = 0.7 – 1.6
- δ13C$_{Sat}$ = -29.0 - -30
- δ13C$_{Aro}$ = -28.5 - -29.5
- Pr/Phy = 0.9 – 1.0

Distribution of Permian Lower Bone Springs Oils

- %S = 1.5 – 3.0
- δ13C$_{Sat}$ = -29.0 – 29.5
- δ13C$_{Aro}$ = -28.5 –29.0
- Pr/Phy = 0.9 - 95
Distribution of Permian Upper Bone Springs Sourced Oils - Carbonate

- %S = 1.5 – 3.0
- δ^{13}C_{Sat} = -26.5 – -27.5
- δ^{13}C_{Aro} = -26.0 – -27.0
- Pr/Phy = 0.60 – 0.85

Distribution of Permian Upper Bone Springs Oils - Shale

- %S = 0.05 – 0.3
- δ^{13}C_{Sat} = -28.0 – -29.5
- δ^{13}C_{Aro} = -28.0 – -29.0
- Pr/Phy = 1.5 – 1.8
Biodegraded or Mixed Oils

A multitude of oil types exist in the Permian Basin
Sources range from sulfur-rich carbonates, clay-rich marine shales, kukersites (G. prisca) algal kerogens
Barnett Shale - oil correlation demonstrated for first time in the Permian Basin
Ordovician Simpson Formation - oil correlation demonstrated
Many oils exhibit intermediate geochemical characteristics indicative of mixing
Biodegradation is a significant process in the Permian Basin
Variable generation rates are implied by the complexity of inferred source lithofacies from oil chemistry
The story is not complete